一亩三分地论坛

 找回密码
 获取更多干货,去instant注册!

扫码关注一亩三分地公众号
查看: 3528|回复: 31
收起左侧

大S开的期待已久的Statistical Learning一月21号就要开课了耶!号召大家报名学习!

[复制链接] |试试Instant~ |关注本帖
DreamBoy 发表于 2014-1-11 14:47:36 | 显示全部楼层 |阅读模式

[其他]Statistical Learning By Trevor Hastie & Rob Tibshirani #9 - 2014-01-21@Stanford

注册一亩三分地论坛,查看更多干货!

您需要 登录 才可以下载或查看,没有帐号?获取更多干货,去instant注册!

x
本帖最后由 EroicaCMCS 于 2014-2-27 00:54 编辑

以前有老师推荐过这本教材 An Introduction to Statistical Learning, with Applications in R,可惜自学没坚持下来,现在有了作者大S教授亲自开公开课,那大家还等什么,还不来速速报名,尤其对Machine Learning有兴趣的童鞋!http://online.stanford.edu/course/statistical-learning-winter-2014


This is an introductory-level course in supervised learning, with a focus on regression and classification methods. The syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines. Some unsupervised learning methods are discussed: principal components and clustering (k-means and hierarchical).
This is not a math-heavy class, so we try and describe the methods without heavy reliance on formulas and complex mathematics. We focus on what we consider to be the important elements of modern data analysis. Computing is done in R. There are lectures devoted to R, giving tutorials from the ground up, and progressing with more detailed sessions that implement the techniques in each chapter.
The lectures cover all the material in An Introduction to Statistical Learning, with Applications in R by James, Witten, Hastie and Tibshirani (Springer, 2013). As of January 5, 2014, the pdf for this book will be available for free, with the consent of the publisher, on the book website.




Instructor(s)Trevor Hastie           Trevor Hastie is the John A Overdeck Professor of Statistics at stanford University. Hastie is known for his research in applied statistics, particularly in the fields of data mining, bioinformatics and machine learning. He has published four books and over 180 research articles in these areas. Prior to joining Stanford University in 1994, Hastie worked at AT&T Bell Laboratories for 9 years, where he helped develop the statistical modeling environment popular in the R computing system. He received his B.S. in statistics from Rhodes University in 1976, his M.S.









Rob Tibshirani           Robert Tibshirani is a Professor in the Departments Health Research and Policy and Statistics at Stanford University. In his work he has made important contributions to the analysis of complex datasets, most recently in genomics and proteomics. His most well-known contribution is the Lasso, which uses L1 penalization in regression and related problems. He has co-authored over 200 papers and three books. Professor Tibshirani co-authored the first study that linked cell phone usage with car accidents, a widely cited article that has played a role in the introduction of legislation that restricts the use of phones while driving. He is one of the most widely cited authors in the entire mathematical sciences field. Professor Tibshirani is a Fellow of the American Statistical Association, the Institute of Mathematical Statistics and the Royal Society of Canada. He won the prestigious COPSS Presidents's award in 1996, the NSERC Steacie award in 1997 and was elected to the National Academy of Sciences in 2012.


Week 1: Introduction and Overview of Statistical Learning (Chapters 1-2, starts Jan 21)http://www.1point3acres.com/bbs/thread-81118-1-1.html 讨论作业贴
Week 2: Linear Regression (Chapter 3, starts Jan 25)
Week 3: Classification (Chapter 4, starts Feb 1)
Week 4: Resampling Methods (Chapter 5, starts Feb 8)
Week 5: Linear Model Selection and Regularization (Chapter 6, starts Feb 15)
Week 6: Moving Beyong Linearity (Chapter 7, starts Feb 22)
Week 7: Tree-based Methods (Chapter 8, starts Mar 1)
Week 8: Support Vector Machines (Chapter 9, starts Mar 8)
Week 9: Unsupervised Learning (Chapter 10, starts Mar 15)













评分

5

查看全部评分

Nirosun 发表于 2014-1-11 22:39:40 | 显示全部楼层
报名~大家一起努力
回复 支持 反对

使用道具 举报

nibuxing 发表于 2014-1-11 23:18:59 | 显示全部楼层
等了10000年了有没有,一定会跟下来!
回复 支持 反对

使用道具 举报

zhugejun 发表于 2014-1-12 02:12:27 | 显示全部楼层
这个必须要跟
还有CVX101 Convex Optimization
回复 支持 反对

使用道具 举报

Iodine577 发表于 2014-1-12 05:36:19 | 显示全部楼层
这课来的真及时。。。。。
回复 支持 反对

使用道具 举报

yum 发表于 2014-1-12 10:00:04 | 显示全部楼层
报名!!
回复 支持 反对

使用道具 举报

ukulele 发表于 2014-1-12 11:32:15 | 显示全部楼层
寒假回家补一下!
回复 支持 反对

使用道具 举报

数字媒体技术 发表于 2014-1-12 22:26:52 | 显示全部楼层
一起努力!
回复 支持 反对

使用道具 举报

kassandra 发表于 2014-1-13 06:00:20 | 显示全部楼层
Mark,这学期正在学统计,想参加~
回复 支持 反对

使用道具 举报

wesley 发表于 2014-1-13 12:28:24 | 显示全部楼层
mark 坐等开课
回复 支持 反对

使用道具 举报

粮果 发表于 2014-1-13 23:56:48 | 显示全部楼层
先看看书...等着开课...
回复 支持 反对

使用道具 举报

Ruscello 发表于 2014-1-14 01:01:16 | 显示全部楼层
已经报名了,等开课
回复 支持 反对

使用道具 举报

头像被屏蔽
XUHANDI 发表于 2014-1-14 07:33:41 | 显示全部楼层
提示: 作者被禁止或删除 内容自动屏蔽
回复 支持 反对

使用道具 举报

caomengchu 发表于 2014-1-16 05:14:03 | 显示全部楼层
registered.
回复 支持 反对

使用道具 举报

demonhunter 发表于 2014-1-17 06:42:39 | 显示全部楼层
报名报名!不过我上学期学过这课就当做是复习了!!

已注册
回复 支持 反对

使用道具 举报

demonhunter 发表于 2014-1-17 06:51:27 | 显示全部楼层
新浪有教材下载:

An Introduction to Statistical Learning, with Applications in R

http://ishare.iask.sina.com.cn/f/37337108.html
回复 支持 反对

使用道具 举报

margaretzs 发表于 2014-1-17 13:04:24 | 显示全部楼层
报名报名!
回复 支持 反对

使用道具 举报

zy0909 发表于 2014-1-17 13:24:51 | 显示全部楼层
多谢LZ提供信息,已注册。
回复 支持 反对

使用道具 举报

jadeiteshan 发表于 2014-1-19 11:52:16 | 显示全部楼层
这门课声名远扬,报名。
回复 支持 反对

使用道具 举报

watertcafe 发表于 2014-1-20 04:47:56 | 显示全部楼层
已报名。。不知道能否跟得上 0基础。。。先试试看吧。。。
回复 支持 反对

使用道具 举报

本版积分规则

请点这里访问我们的新网站:一亩三分地Instant.

Instant搜索更强大,不扣积分,内容组织的更好更整洁!目前仍在beta版本,努力完善中!反馈请点这里

关闭

一亩三分地推荐上一条 /5 下一条

手机版|小黑屋|一亩三分地论坛声明 ( 沪ICP备11015994号 )

custom counter

GMT+8, 2016-12-3 02:23

Powered by Discuz! X3

© 2001-2013 Comsenz Inc. Design By HUXTeam

快速回复 返回顶部 返回列表