荣誉版主
- 积分
- 976
- 大米
- 颗
- 鳄梨
- 个
- 水井
- 尺
- 蓝莓
- 颗
- 萝卜
- 根
- 小米
- 粒
- 学分
- 个
- 注册时间
- 2010-2-23
- 最后登录
- 1970-1-1
|
18. Implement the K-means algorithm
. 1point 3acres
一些比较简单但是重要的机器学习算法需要会描述算法并且写出代码,K-means算法是常考题-baidu 1point3acres
K-means算法简介:
https://jakevdp.github.io/Python ... /05.11-k-means.html. check 1point3acres for more.
Elbow method:
https://en.wikipedia.org/wiki/Elbow_method_(clustering)
Silhouette analysis:
https://scikit-learn.org/stable/ ... uette_analysis.html
K-means ++:
https://en.wikipedia.org/wiki/K-means%2B%2B
Feature scaling:. Waral dи,
https://datascience.stackexchang ... -stage#:~:text=Yes.,KGs%20before%20calculating%20the%20distance..
. .и
- import random
- import numpy as np
- from collections import defaultdict. 1point3acres
- def k_means(X, k=5, max_iter=1000):
- """.1point3acres
- Args:
- - X - data matrix
- - k - number of clusters
- - max_iter - maximum iteratations. 1point 3 acres
- Returns:
- - clusters - dict mapping cluster centers (tuples) to
- observations (list of datapoints, each datapoint is a numpy array)
- """
- # initialize cluster centers by random sample k rows of X
- # random.seed(42)
- centers = [tuple(pt) for pt in random.sample(list(X), k)]
- . .и
- # begin iterations
- for i in range(max_iter):
- clusters = defaultdict(list)
- ..
- # E-Step: assign points to the nearest cluster center. check 1point3acres for more.
- for datapoint in X:. check 1point3acres for more.
- dists = [np.linalg.norm(datapoint - center) for center in centers]
- center = centers[np.argmin(dists)]
- clusters[center].append(datapoint)
-
- # M-Step: average the cluster datapoints to calculate the new centers
- new_centers = []
- for center, datapoints in clusters.items():
- new_center = np.mean(datapoints, axis=0)
- new_centers.append(tuple(new_center))
- -baidu 1point3acres
- # stop iteration if the centers stop changing
- if set(new_centers) == set(centers):
- break
- . 1point3acres.com
- # update centers
- centers = new_centers
- return clusters.1point3acres
- .1point3acres
- # use the iris dataset as example
- from sklearn import datasets
- iris = datasets.load_iris()
- X = iris.data
- . .и
- X_clustered = k_means(X, k=5, max_iter=1000)
- X_clustered
- # Output:
- # defaultdict(list,
- # {(5.242857142857143,
- # 3.6678571428571423,
- # 1.5,
- # 0.28214285714285714): [array([5.1, 3.5, 1.4, 0.2]),
- # array([5. , 3.6, 1.4, 0.2]),.1point3acres
- # array([5.4, 3.9, 1.7, 0.4]),
- # array([5. , 3.4, 1.5, 0.2]),-baidu 1point3acres
- # array([5.4, 3.7, 1.5, 0.2]),
- # array([5.8, 4. , 1.2, 0.2]),. 1point 3acres
- # array([5.7, 4.4, 1.5, 0.4]),
- # array([5.4, 3.9, 1.3, 0.4]),
- # array([5.1, 3.5, 1.4, 0.3]),
- # array([5.7, 3.8, 1.7, 0.3]),
- # array([5.1, 3.8, 1.5, 0.3]),.
- # array([5.4, 3.4, 1.7, 0.2]),
- # array([5.1, 3.7, 1.5, 0.4]),
- # array([5.1, 3.3, 1.7, 0.5]),
- # array([5. , 3.4, 1.6, 0.4]),
- # array([5.2, 3.5, 1.5, 0.2]),
- # array([5.2, 3.4, 1.4, 0.2]),
- # array([5.4, 3.4, 1.5, 0.4]),. From 1point 3acres bbs
- # array([5.2, 4.1, 1.5, 0.1]),. 1point 3 acres
- # array([5.5, 4.2, 1.4, 0.2]),
- # array([5.5, 3.5, 1.3, 0.2]),
- # array([4.9, 3.6, 1.4, 0.1]),
- # array([5.1, 3.4, 1.5, 0.2]),. 1point3acres
- # array([5. , 3.5, 1.3, 0.3]),
- # array([5. , 3.5, 1.6, 0.6]),
- # array([5.1, 3.8, 1.9, 0.4]),
- # array([5.1, 3.8, 1.6, 0.2]),
- # array([5.3, 3.7, 1.5, 0.2])],
- # (4.704545454545454,
- # 3.122727272727273,
- # 1.4136363636363638,
- # 0.2000000000000001): [array([4.9, 3. , 1.4, 0.2]),. .и
- # array([4.7, 3.2, 1.3, 0.2]),
- # array([4.6, 3.1, 1.5, 0.2]),
- # array([4.6, 3.4, 1.4, 0.3]),
- # array([4.4, 2.9, 1.4, 0.2]),
- # array([4.9, 3.1, 1.5, 0.1]),
- # array([4.8, 3.4, 1.6, 0.2]),
- # array([4.8, 3. , 1.4, 0.1]),
- # array([4.3, 3. , 1.1, 0.1]),
- # array([4.6, 3.6, 1. , 0.2]),
- # array([4.8, 3.4, 1.9, 0.2]),
- # array([5. , 3. , 1.6, 0.2]),
- # array([4.7, 3.2, 1.6, 0.2]),
- # array([4.8, 3.1, 1.6, 0.2]),
- # array([4.9, 3.1, 1.5, 0.2]),
- # array([5. , 3.2, 1.2, 0.2]),
- # array([4.4, 3. , 1.3, 0.2]),. .и
- # array([4.5, 2.3, 1.3, 0.3]),
- # array([4.4, 3.2, 1.3, 0.2]),
- # array([4.8, 3. , 1.4, 0.3]),
- # array([4.6, 3.2, 1.4, 0.2]),
- # array([5. , 3.3, 1.4, 0.2])],. 1point 3acres
- # (6.23658536585366,
- # 2.8585365853658535,.
- # 4.807317073170731,. 1point 3acres
- # 1.6219512195121943): [array([7. , 3.2, 4.7, 1.4]),
- # array([6.4, 3.2, 4.5, 1.5]),. ----
- # array([6.9, 3.1, 4.9, 1.5]),
- # array([6.5, 2.8, 4.6, 1.5]),
- # array([6.3, 3.3, 4.7, 1.6]),
- # array([6.6, 2.9, 4.6, 1.3]),
- # array([6.1, 2.9, 4.7, 1.4]),
- # array([6.7, 3.1, 4.4, 1.4]),
- # array([5.6, 3. , 4.5, 1.5]),
- # array([6.2, 2.2, 4.5, 1.5]),
- # array([5.9, 3.2, 4.8, 1.8]),
. 1point 3acres - # array([6.3, 2.5, 4.9, 1.5]),
- # array([6.1, 2.8, 4.7, 1.2]),. Waral dи,
- # array([6.4, 2.9, 4.3, 1.3]),
- # array([6.6, 3. , 4.4, 1.4]),. ----
- # array([6.8, 2.8, 4.8, 1.4]),
. 1point 3 acres - # array([6.7, 3. , 5. , 1.7]),
- # array([6. , 2.9, 4.5, 1.5]),
- # array([6. , 2.7, 5.1, 1.6]),
- # array([6. , 3.4, 4.5, 1.6]),
- # array([6.7, 3.1, 4.7, 1.5]),
- # array([6.3, 2.3, 4.4, 1.3]),
- # array([6.1, 3. , 4.6, 1.4]),
- # array([6.2, 2.9, 4.3, 1.3]),. ----
- # array([5.8, 2.7, 5.1, 1.9]),
- # array([6.5, 3.2, 5.1, 2. ]),
- # array([6.4, 2.7, 5.3, 1.9]),
- # array([5.7, 2.5, 5. , 2. ]),
- # array([5.8, 2.8, 5.1, 2.4]),
- # array([6. , 2.2, 5. , 1.5]),
- # array([5.6, 2.8, 4.9, 2. ]),
- # array([6.3, 2.7, 4.9, 1.8]),.google и
- # array([6.2, 2.8, 4.8, 1.8]),-baidu 1point3acres
- # array([6.1, 3. , 4.9, 1.8]),
- # array([6.3, 2.8, 5.1, 1.5]),
- # array([6.1, 2.6, 5.6, 1.4]),
- # array([6. , 3. , 4.8, 1.8]),
- # array([5.8, 2.7, 5.1, 1.9]),
- # array([6.3, 2.5, 5. , 1.9]),. ----
- # array([6.5, 3. , 5.2, 2. ]),
- # array([5.9, 3. , 5.1, 1.8])],
- # (5.529629629629629,
- # 2.6222222222222222,. 1point3acres
- # 3.940740740740741,
- # 1.2185185185185188): [array([5.5, 2.3, 4. , 1.3]),
- # array([5.7, 2.8, 4.5, 1.3]),
- # array([4.9, 2.4, 3.3, 1. ]),
- # array([5.2, 2.7, 3.9, 1.4]),. From 1point 3acres bbs
- # array([5. , 2. , 3.5, 1. ]),
- # array([5.9, 3. , 4.2, 1.5]),
- # array([6. , 2.2, 4. , 1. ]),
- # array([5.6, 2.9, 3.6, 1.3]), ..
- # array([5.8, 2.7, 4.1, 1. ]),
- # array([5.6, 2.5, 3.9, 1.1]),
- # array([6.1, 2.8, 4. , 1.3]),. 1point 3 acres
- # array([5.7, 2.6, 3.5, 1. ]),
- # array([5.5, 2.4, 3.8, 1.1]),
- # array([5.5, 2.4, 3.7, 1. ]),
- # array([5.8, 2.7, 3.9, 1.2]),
- # array([5.4, 3. , 4.5, 1.5]),
- # array([5.6, 3. , 4.1, 1.3]),
- # array([5.5, 2.5, 4. , 1.3]),.google и
- # array([5.5, 2.6, 4.4, 1.2]),
- # array([5.8, 2.6, 4. , 1.2]),
- # array([5. , 2.3, 3.3, 1. ]),
- # array([5.6, 2.7, 4.2, 1.3]),
- # array([5.7, 3. , 4.2, 1.2]),. ----
- # array([5.7, 2.9, 4.2, 1.3]),
- # array([5.1, 2.5, 3. , 1.1]),
- # array([5.7, 2.8, 4.1, 1.3]),
- # array([4.9, 2.5, 4.5, 1.7])],.1point3acres
- # (6.9125000000000005,
- # 3.099999999999999,. check 1point3acres for more.
- # 5.846874999999999,
- # 2.1312499999999996): [array([6.3, 3.3, 6. , 2.5]),
- # array([7.1, 3. , 5.9, 2.1]),
- # array([6.3, 2.9, 5.6, 1.8]),
- # array([6.5, 3. , 5.8, 2.2]), ..
- # array([7.6, 3. , 6.6, 2.1]),
- # array([7.3, 2.9, 6.3, 1.8]),
- # array([6.7, 2.5, 5.8, 1.8]),
- # array([7.2, 3.6, 6.1, 2.5]),
- # array([6.8, 3. , 5.5, 2.1]),
- # array([6.4, 3.2, 5.3, 2.3]),. 1point 3 acres
- # array([6.5, 3. , 5.5, 1.8]),
- # array([7.7, 3.8, 6.7, 2.2]),
- # array([7.7, 2.6, 6.9, 2.3]),
- # array([6.9, 3.2, 5.7, 2.3]),
- # array([7.7, 2.8, 6.7, 2. ]),
- # array([6.7, 3.3, 5.7, 2.1]),
- # array([7.2, 3.2, 6. , 1.8]),
- # array([6.4, 2.8, 5.6, 2.1]),
- # array([7.2, 3. , 5.8, 1.6]),. check 1point3acres for more.
- # array([7.4, 2.8, 6.1, 1.9]),
- # array([7.9, 3.8, 6.4, 2. ]),. 1point3acres.com
- # array([6.4, 2.8, 5.6, 2.2]),. 1point 3 acres
- # array([7.7, 3. , 6.1, 2.3]),
- # array([6.3, 3.4, 5.6, 2.4]),. .и
- # array([6.4, 3.1, 5.5, 1.8]),
- # array([6.9, 3.1, 5.4, 2.1]),
- # array([6.7, 3.1, 5.6, 2.4]),
- # array([6.9, 3.1, 5.1, 2.3]),
- # array([6.8, 3.2, 5.9, 2.3]),
- # array([6.7, 3.3, 5.7, 2.5]),
- # array([6.7, 3. , 5.2, 2.3]),. check 1point3acres for more.
- # array([6.2, 3.4, 5.4, 2.3])]})
复制代码 . 1point 3acres
|
|