2019 Fall Computer Science 录取结果播报

一亩三分地论坛

 找回密码
 Sign Up 注册获取更多干货

扫描二维码登录本站

最近看过此主题的会员


码农求职神器Triplebyte
不用海投
内推多家公司面试

科技公司如何
用数据分析驱动产品开发
Coupon code: best

深入浅出AB Test
从入门到精通
Coupon code: best

E轮2.5亿美元融资
一起作业诚聘
机器学习/数据/教育等职位
游戏初创公司招聘工程师、UIUX Designer和游戏策划
坐标湾区
DreamCraft创始团队
招聘游戏开发工程师
把贵司招聘信息放这里
查看: 5931|回复: 120
收起左侧

【最终版回报社会贴】new grads湾区DA/DS找工作超细致回顾+面经+资料总结!!!

    [复制链接] |试试Instant~
我的人缘0

分享帖子到朋友圈
leiduan 发表于 2019-1-6 05:03:07 | 显示全部楼层 |阅读模式
本楼: 【顶】   100% (34)
 
 
0% (0)   【踩】
全局: 顶  100% (219)
 
 
0% (0)  踩

注册一亩三分地论坛,查看更多干货!

您需要 登录 才可以下载或查看,没有帐号?Sign Up 注册获取更多干货

x
写在开头

本文是以Business analytics 的学生视角提供的关于在湾区找DA(data analyst)/DS(data scientist)工作的经验和面试资料总结,比较适合小白选手或者new grads,CS或Stats背景的朋友可只挑自己感兴趣的面经之类的看个乐趣~
整个内容比较细和杂,省去了最简单的简历准备工作,专注于把相对经验的东西归纳,以此来提供帮助给大家。
基本上,内容大致分为三个部分:
找工作常识总结(如何拿到面试)----->    概括性面经+资料(如何克服一轮轮面试)  ------>  个人心得(整体上的求职建议)----> 其他补充资源


  • 楼主个人信息供参考:
本科      | 中央财经,经济学学士(国贸方向),少量统计编程经验(stata)
Master  | UC San Diego,Business analytics专业第二届17fall入学, programming以R为主
现状      | 主用Python,SQL
兴趣      | product analysis,ML



  • 面试经验汇总:(只计算湾区和旧金山的申请并且过了HR面之后的, 加粗的是最终去向)

18 summer intern: Thumbtack(product analyst intern),
                                 Glassdoor(decision science Intern),
                                 IBM(data scientist intern),
                                 Yelp(data scientist intern),
                                 Mcafee(data scientist intern),
                                 First Republic Bank(data scientist intern)
19 Fulltime           :Quantifind(data scientist),  
                                Pocket Gems(data analyst),  
                                Visa(data scientist),  
                                Rakuten Intelligence(data analyst),
                                Thumbtack(product analyst),
                                Zynga(data analyst),
                                LIME(data analyst),
                                SHIFT(data scientist)
列出来才发现只是靠谱点的算起来就这么多,整体算起来得是挂了多少( ╯□╰ )。上面的有好几次onsite之前的第三、四轮挂掉的(心痛1s),也有签了offer之后就没再follow up、自己放掉的机会,后面会再具体讲。


找工作常识总结(扫盲向)

  • Job market招人时间

基本上公司在data analyst和scientist在这个方面的招聘进度条差不太多,以一个典型的即将19 summer毕业的学生为例来讲好了:
1.    intern:Big name的summer intern基本上在前一年的11月-当年的2月份之间就走完了从开放opening到招收完的流程了,所以想进FLAG(Facebook, linkedin, Amazon, Google)或类似的同学一定早点下手,楼主就是错过了这波或者没有用正确的方法申请,导致和这些机会失之交臂;中大型或中型(linkedin 5000+)的公司的窗口期貌似会略长一些,同大公司基本同时间段开始,结束期有的能够延长到当年的4月份;4-6月份当然也有中型的公司还有opening,但数量会少很多,基本上就是中小型的公司还会持续有opening开放,而这种更临时性或者contractor性质的intern就很看机会了,需要大家多刷平台多关注。所以现在刚好算是申intern的最佳时间,还在校的同学加油了!
2.    Fulltime:fulltime(这里专指entry-level的)比intern更讲究的是在于组里只会在有headcount的时候招人,所以每年的1,2月份之后会有一波小高潮(据一位HR说是因为新一年的headcount一般刚批下来),然后是6-9月份的暑期也会有很多的岗位。其他的时间更多的是组里的人员流动导致的空缺需要补齐。

  • 申请方式有效性
这里分享一个中国留学生申请工作时的有效性递减链条,来自于自己跌过的坑以及与朋友们交流得到的经验总结(不喜勿喷)。如果你玩过德扑的话:学生申请工作时的有效性递减链条,来自于自己跌过的坑以及与朋友们交流得到的经验总结(不喜勿喷)。如果你玩过德扑的话:

                               
登录/注册后可看大图

   1. Hiring manager邮箱内推(皇家同花顺Royal Flush):因为能最直接的让hiring manager看到你的简历,而工作邮箱的内容一般不会忽略,所以是回复率最高的方式(当然简历okay是前提)
   2. 组内同title邮箱内推(四条Four of a Kind):同组的相同title的人的内推(senior data scientist/analyst更佳)有的时候可以达到内推到hiring manager同等的效果,因为ta有可能会forward你的简历给HR同时cc对应的hiring manager。
   3. 一般系统内推(顺子Straight): 大公司里无所谓什么title,小公司的话同组的title更好,不过这个就不是邮件内推了,是一般意义上的system refer,只是换了一个更小的pool和别人竞争而已。关于这个有的时候地里会有各位大佬放出refer的福利。我本人并未参与过,但这肯定是一个很好的资源,大家可以关注一下相关信息。
   4. 领英联系公司的HR(两对Two Pair):有的时候运气好,在领英上可以联系到HR发简历给ta,增加你的建立的曝光度,不至于从茫茫的系统内推中难以脱颖而出。
   5. Career fair(一对Pair):据朋友说有在career fair上拿到面试的,不过好像几率很小,我个人就去过两次所以保留发言权。
   6. 网申(not even a high card):我个人认为这个是所有新手new grads(除了简历完美到不行的大神)一定要避免的,就是疯狂海投。我之前也投了少说两三百吧,基本无一生还。听到的朋友里面网投得到回复的寥寥无几,拿到工作的貌似就更少了。所以非常不建议大家走这条路。


  • 领英找refer的前期准备内容
由于领英是我认为最实用也成本最低的找refer的申请方式,所以在此着重介绍:
   1. 大致按不同方向修改过的多版简历。(比如product方向的可能更看重你的项目经历和实际结果,偏engineering或硬核的data scientist更看重kaggle和算法相关经历,或者data analyst就主要是Sql相关等等,你需要大致准备几个不同侧重点和方向的简历,方便稍加修改之后可以直接发给refer你的人)
   2. 相对应不同版本简历的不同Cover letter。修改关键字和公司就行,各个学校的career service应该会有模板。
   3. 一个购买了初级(或更高级的)会员的领英账号
   4. linkedin自家,以及Glassdoor,Indeed等等可以知晓opening的平台与途径。
   5. .......还要有一颗足够坚强的内心...要非常坚强才可以


  • 领英找refer大致流程
   1. 平台上看到一个喜欢的岗位,确认自己喜欢+工作经验和技能匹配。-baidu 1point3acres
   2. 领英上找同公司的同组或者同title的人,发300字的cold note,我个人的模板大致如下所示,测试后发现通过率尚可
Hi XXX,
So nice to meet you via LinkedIn!
I'm XXX from UCSD, MS in Analytics and now a Data Scientist intern in SF. I noticed that (XXX Company) is hiring a data scientist/analyst which matches my skills (R/Python, SQL, ML) quite well.
May I contact you for some help?
Expecting your reply.
(your name)

  3. 通过之后则可以根据回复的不同热情程度选择激进一些直接表达对职位感兴趣、也可迂回一些表达对公司和工作内容感兴趣,看自己选择。   
  4. 需要时可以约一个quick call,这个的回复率貌似比单纯的文字交流高一些。如果对自己的口语表达比较有信息可以选择此项。
  5. 达成统一后发送简历,并以一周为频率进行follow up询问refer进度或者在拿到面试之后阶段性的给update。


  • 如何看这个岗位适不适合你
   1.  第一要义,你喜不喜欢。
        如果Job Description你都看的想睡,那真的别申,浪费自己和公司的时间。
   2. 看工具要求你是否符合。
       Data行业如果工具要求你不符合,申请起来会比较麻烦。不过类似于Tableau的倒是可以速成所以不必担心。
       至于内容中具体明确要求要熟练掌握的Python和R或者Sql的经验,如果没有的话一定要提前练习和补充学习。. From 1point 3acres bbs
   3. 看年限要求是否符合。
       一般这里会吓退很多新人,因为动不动Fulltime就会要求一两年起步,三五年左右的工作经验。而据我申请和拿到面试的结果来看,其实:
       1). 没有年限要求的最好。
       2). 1-2年要求的,可以用累计1年左右的实习经验来凑,也会给面试。
       3). 2-4年要求甚至以上的,必须得有至少1-2年工作经验。不过有的时候没有工作经验也不要灰心,可以先申请着,很多公司为了拿到一个大的headcount budget总是会把职位要求定的比较高,然后最终如果真的选了一个junior之后再下调salary就行,以保证充足的budget来应付各种情况。所以看到高年限,偶尔也可以申一申。

-baidu 1point3acres
以上是一些简单的经验,目前为止尚未涉及任何专业的data知识,纯粹是为了*拿到面试*这一个目的。因为这是相当重要的第一步,否则其他的无从谈起。下一个部分则是着重讲解具体面试内容,来帮助大家克服面试准备无头绪的难关。

. check 1point3acres for more.
概括性质面经+对应资料
这一趴就是按内容来划分的面试问答和资料准备了。我会尽量回忆一些被问过的高频问题以及挂了之后的自己找的学习资源和资料(没错是挂了之后( ╯□╰ ))。由于intern和fulltime的面试内容其实差别并不大,所以这里不做刻意区分,只以title来划分一般的面试内容:
  
Title
  
介绍
面试内容
Data Scientist
(偏算法)
一般意义上的DS,需要承担研究、优化算法或支持组内其他与数据相关的业务。
Machine learning算法(较细致和具体),统计,online python coding test,  SQL(不多)
Data Scientist
(偏产品)
以FB的DS-analytics岗位为代表的产品分析方向的data scientist,介乎于DA和硬核DS之间的一个职位。
Machine learning算法(中等难度),统计,产品case分析,online SQL/Python coding test, A/B testing
Data Analyst
和上一个DS比较相似,但更加少了些算法的问题,多了些具体情景的SQL的Online coding test和case
简单的Machine learning算法问答(有的没有),统计,必考SQL,产品case分析, product sense, A/B testing

所以总结一下,大致有以下内容需要认真准备:Machine Learning, 统计、概率与A/Btesting,Online coding(Python+ R), SQL,  和product sense.
接下来我逐个来说,最后再做个大总结。

  • Machine Learning
  1. 常见面试问题
     1). What is overfitting?  / Please briefly describe what is bias vs. variance.
      2). How do you overcome overfitting? Please list 3-5 practical experience.    / What is 'Dimension Curse'? How to prevent?
      3). Please briefly describe the Random Forest classifier. How did it work? Any pros and cons in practical implementation?
      4). Please describe the difference between GBM tree model and Random Forest.
      5). What is SVM? what parameters you will need to tune during model training? How is different kernel changing the classification result?
      6). Briefly rephrase PCA in your own way. How does it work? And tell some goods and bads about it.
      7). Why doesn't logistic regression use R^2?
      8). When will you use L1 regularization compared to L2?
      9). List out at least 4 metrics you will use to evaluate model performance and tell the advantage for each of them. (F1 score, ROC curve, recall, etc…)
    10). What would you do if you have > 30% missing value in an important field before building the model?
     ....

以上是我整理出来的被问到的差不多Top 10的问题,至于回答的深度可以因人而异或者因岗位难度而已,简单的讲一讲概念,难的可能会发散到深一些的矩阵计算和算法原理。
如果以上的问题你还有都不懂的问题,那可能需要多下一番功夫了;
如果你大致能听懂问题,但是静下心来问自己,然后让自己回答一下,哪怕是有一点不清楚,我也建议: 去花一个下午坐在那里找所有相关的资料,落到文字层面的东西,整成一个小专题,有段落摘抄有笔记有链接。然后在理解之后再确保自己可以非常简明扼要的在电面中用英语流利表达。这很重要,懂,和能让别人觉得你懂是两回事。所以面试前顺口条也是很推荐的(打辩论的职业病,会心里面准备一篇小的短稿件方便做答)
我自己已经整理了大多部分的内容,但是我不打算发到平台上来,因为直接给鱼基本上就不会学拿杆了,而不拿杆的基本上面试都会被摁在地上摩擦,因为很容易露馅。如果哪位同学有非常具体的问题想问的话,可以留言或者顶大米,我会定期回复的。


  2. 相关资料准备
      1). coursera上Andrew Ng的Machine learning课程(https://www.coursera.org/learn/machine-learning
           算得上考古级别的课程了,内容有些老旧但是很经典,很适合商学院BA专业的从0开始补齐ML的背景知识
      2). 还有一个速成的:15 hours of expert ML videos: https://www.dataschool.io/15-hours-of-expert-machine-learning-videos/. 我没看完,只选了自己想看的了解了一些。
      3). 《ISLR》(一个免费链接直通车),入门神书不解释,可惜我第一本看的不是它,所以后来大多当作工具书用了,需要的时候才查阅一下。
      4). 《Practical Statistics for Data Scientists: 50 Essential Concepts》,很实用的一本书,专讲一些细小知识,不深但是读完会感觉多了些对ML的理解。
      5). 书和课说完了,肯定得推一下Medium了,尤其是Towards Data Science专题,相信熟悉的人都知道里面的文章有多么实用。
           我比较喜欢的是里面某个作者写Machine Learning 101(https://medium.com/machine-learning-101)这个小专题,非常浅显易懂,适合初学者用具象的方式理解抽象算法。
      6). StackOverflow(https://stackoverflow.com/)自然也是不能漏掉的,学data或者编程总会遇到很细枝末节的问题,这些一般文章里没有,所以就需要求助社群的力量了。
      7). 最后的最后,务必亲手写两三个project,哪怕是调包写,也比没写过的话,不然面试也会很尴尬的。

  • 统计,概率与A/B testing
  1. 常见面试问题
     1). What is p-value? What is confidence interval? Explain them to a product manager or non-technical person.. (很明显人家不想让你回答: 画个正态分布然后两边各卡5% ( ̄▽ ̄)" )
      2). How do you understand the "Power" of a statistical test?
      3). If a distribution is right-skewed, what's the relationship between medium, mode, and mean?
      4). When do you use T-test instead of Z-test? List some differences between these two.
      5). Dice problem-1: How will you test if a coin is fair or not? How will you design the process(有时会要求编程实现)? what test would you use?
      6). Dice problem-2: How to simulate a fair coin with one unfair coin?
      7). 3 door questions. (自行google吧,经典题之一)
      8). Bayes Questions:  Tom takes a cancer test and the test is advertised as being 99% accurate: if you have cancer you will test positive 99% of the time, and if you don't have cancer, you will test negative 99% of the time. If 1% of all people have cancer and Tom tests positive, what is the prob that Tom has the disease? (非常经典的cancer screen的题,做会这一道,其他都没问题了)
      9). How do you calculate the sample size for an A/B testing?
    10). If after running an A/B testing you find the fact that the desired metric(i.e, Click Through Rate) is going up while another metric is decreasing(i.e., Clicks). How would you make a decision?
    11). Now assuming you have an A/B testing result reflecting your test result is kind of negative (i.e, p-value ~= 20%). How will you communicate with the product manager?
           If given the above 20% p-value, the product manager still decides to launch this new feature, how would you claim your suggestions and alerts?


  2. 相关资料准备
      1). A/B testing 的资料首推的是Udacity上免费的A/B testing(by Google)的课, 同学们的评价都还不错,很适合全面的了解一下A/Btesting。
      2). 其余的A/B testing的内容大多来自于Medium上的好文,原因是A/B testing是一个要和实际的业界应用场景结合的东西,只知道原理和基本不懂没啥区别。
           所以要去看一看业界的人写的关于A/B testing的文章,只有带着案例看,才能懂面试中的问题都应该怎么样回答。
      3). 还有就是如果有在工作的学长姐,长辈等等,一定要不吝啬的问A/B 方面的问题。他们说个十几二十分钟,能省下你很多时间去到处扒资料,原因同上条不解释。
      4). Stats的话,有一个非常快的捡起一些统计学基础的内容是courseraintro to stats and prob课程,很快,一个下午就可以看完。
      5). 然后我要推一波我用的很多的udemy的课程了,他们家经常打折,我赶9刀一节课的时候买的,Data Science Career Guide - Interview Preparation, 还是很不错的。课程轻量,学起来无压力。
      6). 概率题我觉得对于大多数中国学生来说都没问题,都是高中学过的,稍加捡起就行。udemy的课就可以帮你捡起来。
. From 1point 3acres bbs


  • Online coding(Python + R)
  1. 我遇到的面试问题(这个考的五花八门,所以不敢说是最常见的)
     1). Report the biggest sum of a continuous 3 numbers in a list? with the related index?
     2). Dynamic programming problem: Now you have 5 types of coins(1,2,3,5,8) and a total sum(a big number, say 589). How many different combinations of coins can you find to reach this total sum?
     3). Please write a function to reverse the key and value in a dictionary. When you have repeated values, please only keep the first key as the new value.
     4). Similarly to the "gather" and "spread" functions in the tidyr package, write a one by yourself and test it using XXX dataset.
     5). Given a log file with rows featuring a date, a number, and then a string of names, parse the log file and return the count of unique names aggregated by month. (我的不是这个原题,但是意思很像)
      6).  Using python to calculate a 30-day rolling profit. (大致就是要用python写一个rolling window)
...
     还有更多的我就不一一列出来了。写代码真是没什么捷径好走,我的建议是平时自己遇到问题就多搜一搜,然后能收写的时候尝试手写不要调包。久而久之就熟练了。


  2. 相关资料准备
      1). 算法自然是逃不过Leetcode了,虽然CS的同学用的比较多,但是想申DS的话我觉得Easy 和Medium水平的刷一刷有利无害。
      2). 讲算法的,我只看过youtube上的一些视频觉得非常的不错,但是也只是试了试,有兴趣的同学可以多研究研究。
      3). 划重点,大家在面online coding的轮次之前,千万记得去glassdoor上看一下会不会有人share一些题目。遇不到原题权当练手,遇到原题了的话简直不要太爽。(glassdoor --> a company --> interview question --> title)
      4). 熟悉R: 我是和同学一起在上学期间刷完了datacamp上所有的R的课程。入门很合适。
      5). 熟悉Python:datacamp刷了一些,并没刷完。
                              我推荐的是Udemy家的两个课:Data Analysis with Pandas and PythonPython for Data Science and Machine Learning Bootcamp。 非常简单易懂,上手率非常高。
                              一个好网站,同学推荐的: real python
                              手上如果还有书就更好了,甩给你们一些选项: https://realpython.com/best-python-books/
  • SQL
这一部分可能是我找工作的时候最有启发的部分了。因为我们的学校项目没有很重视SQL,我个人又觉得SQL很简单所以一直没怎么上心。后来挂了几次之后才发现其实SQL考的难起来也是挺难的。所以写一些心得分享给大家

  1. 常见面试问题
     1). What is the difference between union and union all? where and having?
     2). Table【in_app_purchase】:
                      uid: unique user id.
                      timestamp: specific timestamp detailed to seconds.
                      purchase amount: the amount of a one-time purchase.
           This is a table containing in-app purchase data. A certain user could have multiple purchases on the same day
           Question 1: List out the top 3 names of the users who have the most purchase amount on '2018-01-01'
           Question 2: Sort the table by timestamp for each user. Create a new column named "cum amount" which calculates the cumulative amount of a certain user of purchase on the same day.
           Question 3: For each day, calculate the growth rate of purchase amount compared to the previous day. if no result for a previous day, show 'Null'.
           Question 4: For each day, calculate a 30day rolling average purchase amount.
     3). Table【Friending】
                     time = timestamp of the action
                     date = human-readable timestamp, i.e, 20108-01-01
                     action = {'send', 'accept'}
                     actor_id = uid of the person pressing the button to take the action
                     target_id = uid of another person who is involved in the action
           Question: what was the friend request acceptance rate for requests sent out on 2018-01-01?
           ...
           因为时间关系我没有再陈列更多,但最典型的题目我已经写出来了。
           题目二涵盖了简单的aggregate问题,cumulative问题,rolling window问题等等。搞定这些,其他的都只是一些简单变形。
           题目三涵盖了self-join,并且有一些tricky的大于等于号的应用,有兴趣可以在地里查一下Facebook面经的解答。
           其他的题目无非是多了一些table,join麻烦一些或者加了一些case when,难度都不会有太大的变化。做好几个经典题,然后自己整理好就可以以不变应万变了。


  2. 相关资料准备
      1). 扫盲网站:SQL ZOOW3schools,非常实用,适合翻阅。
      2). 两个Udemy的SQL课,我女朋友用的,一周时间几乎0基础跟下来,进步非常快:SQL - MySQL for Data Analytics and Business IntelligenceThe Ultimate MySQL Bootcamp
      3). 刷题的话,Leetcode上有一些题,可以做一下。还有好心人直接做了个整理,在这里:summary of sql in leetcode
      4). Hackerrank上的题自然是要全刷光的,因为难度非常简单,快的话一两天也许就做完了。
      5). 更多的网站在这里, 链接甩给你们自行取用:18 best sql online learning resources
      6). 建议自己下载一个My SQL装到电脑上,模拟真实的SQL环境来学习。
      7). Mysql 里关于Windows function和frame clause的教程:Windows functionFrame Clause。这个非常重要,windows function可以说是SQL面试里的大杀器,非常节省时间而且思路清晰。
8). 建议也学会用WITH common_table_expression。可以让你的SQL看起来非常整洁和容易理解。
      9). 最最重要的来了。
           如果你觉得刷完题或者学完以上的内容就万事大吉了,那还真的不是。我一开始也有这样的误区。实际上刷完Hackerank也并不能帮你很快的做出我给的例题。
           而其实,对于metrics或者product的了解能够帮助你很好的准备SQL面试,因为所有的SQL面试都是围绕着**与business相关的metrics**而展开的。
           举例而言,游戏公司一定会考DAU(daily active user)或者purchase rate, Facebook就会是friend request 相关的,以此类推。所以熟悉你申请公司的业务再针对性准备SQL,一定会事半功倍。

  • Product sense
   1. 常见面试问题
     1). Today you immediately notice that our app's new users are doubled. What could be the reason? Do you think it's good or not?
     2). If we have an app with in-app purchase, name at least 4 metrics you would like to monitor in your dashboard.
     3). If you are running an A/B testing and find that the result is very positive, thus you decide to launch it. In the first 2 weeks, the performance of our website is very positive.
           However, with time flying by, all metrics seem to go back to normal. How will you explain this result?  
     4). Assume we are Facebook and we would like to add a new 'love' button. should we do this?  
     5). We are running 30 tests at the same time, trying different versions of our home page. In only one case test wins against the old home page. P-value is 0.04. Would you make the change?
     6). If after running an A/B testing you find the fact that the desired metric(i.e, Click Through Rate) is going up while another metric is decreasing(i.e., Clicks). How would you make a decision?
     7). Assume that you are assigned to estimate the LTV(lifetime value) of our game app player. what kind of metrics would you like to calculate so as to make a good prediction?
           Assume that you already collect all that you want. How would you make this prediction/estimation?
     8). If you got a chance to add on new features for our app to increase our profit within a very short term. What will you do?
      ....
      大概就是以上的这些问题了。你可以发现的是,大多是围绕着metrics和如何提高product performance来展开的。说实话这些对于new grads来说非常不友好因为没有工作经验。我也是阅读了很多的资料之后才掌握了其中的一些门道。

   2. 相关资料准备
      这里看过的资料太杂了,很多都是零星的网站未能保存下来。能系统整理的不多,我就尽量以经验的方式分享给大家。基本上你要能够像一个product manager一样思考问题。
      1). 有一个比较好的课程,product school.(https://www.productschool.com/). 貌似是各个湾区的tech公司的DS或PM大佬们来分享一些案例和学习经验。
           我没有买过课程但是看过youtube上的免费视频,非常受益。因为product的事情就是在和真正做产品的人的交流中一点一点积累来的。
      2). Metrics: 一个关于Game metrics的汇总(https://www.cooladata.com/19-metrics-every-mobile-games-needs-track/),也有一定的适用性可以扩展到其他mobile app上。
                           Critical metrics every product manager must track(https://productcoalition.com/critical-metrics-every-product-manager-must-track-c5f1e46e3423)
      3). A/B testing:A/B 测试中 20 个必须知道的问题
      4). 有一个非常好的资源A Collection of Data Science Takehome Challenges. 因为版权原因不能share,但这个真的是非常棒的资源,可以让你有机会解决很多实际的DS问题,并且也和product有关。
           如果你周围有朋友能拿到这个资源或者你愿意买的话,非常强烈推荐。能让你对DS的日常工作内容有一个本质理解上的飞跃。
      5). 一些个人想法:
           大多的产品问题都是围绕着产品的metrics或运营中遇到的问题展开的。如果针对互联网行业来说, 一个典型的产品要从推出后经历以下阶段:user acquisition --> user engagment / retention --> monitization.
           讲一个异曲同工的事件来帮助理解吧。了解头条系公司的都知道,公司内有一个流水线作业的产品工厂模式。他们只有三个最核心的职能部门,技术,user growth和商业化。技术是保障了整体的运营,所以在整体的产品很稳定之后,就要看一下用户的留存率。如果发现用户的留存率(retention)或使用率(engagement)非常高,则进入user growth的推动环节,大批量的marketing来拉动新的用户增长(user acquisition)。最后把商业化(广告等)的内容接入产品,迅速变现。虽然顺序和我说的不太一样,但是实际上就是在在这三个部分对一个产品进行不断的迭代。所以metrics也离不开这三个部分。user acquisition讲求新用户注册率,user engagement讲求DAU(日活量),monitization讲求LTV 和ARPDAU(Average revenue per daily active user)等等。逐渐加深对互联网产品的理解,就能更好的应对metrics的问题。面试中metrics的问题,本质上一切都是为了产品迭代和用户增长以及变现。
           关于产品中被问到的A/B testing的问题,很多是面试官为了考察你是否能针对特定的情况来分析A/B testing的结果。只看P-value是非常学生的思维,具体情况中的A/B testing是要从一开始的new feature的想法到后来设计整体的实验再到分析结果再到最后给建议的一整个流程。面试官想要的是一个批判思维,需要你对每一个步骤都扣的非常细致,以此来确保实验和你的结论之间没有断层。


个人心得
呼....终于写完了...写了整整两天。不得不吐槽一句地里这个发帖的东西是真的不好用,动不动就草稿消失不见了,不然也不至于写这么久。
写这个初衷是为了share一些想法给周围的朋友,帮助他们也能拿到心仪的offer。东西有些多,但是不希望吓到大家,只是尽可能地把自己用过的资源和材料都分享出来,也贴上了链接,方便大家取用。
基本上我把所有的学习过程和资源都已经分享给大家了, 除了自己的笔记之外。不share的理由我已经在前面写过了~希望大家能善用这些资源自己做总结,会很有收获。
如果对于面试的问题有自己的回答,可以发到留言区,我会定期查看和回复,大家也要可以交流。
从开始着手修改简历到最后拿到一个自己算满意的offer基本上花了(1月份~5月份) + (9~12月)总共8个多月的时间。应该算比较久的时间。感觉我是挂掉了很多面试之后,才开始慢慢系统的整理。整理之后就思路清晰很多了。
祝小伙伴都早日上岸~

其他补充资源
1. 我自己的coding笔记,excel形式的,在附件1中。
2. 一些我整理的学习笔记截图,在附件1中,方便大家参考。
3. ML cheat sheet, 在附件1中。
4. 一本好书:Data science for business。我还在读的过程中。
5. 一个能理解Data Science在现代企业里的作用的一本书:Lean Analytics. 需要大家自己找找免费版或者买一本把,我读了70%,真的很值得一读。
7. Notes and technical questions from interviewing as a Data Scientist in 2018: https://towardsdatascience.com/notes-and-technical-questions-from-interviewing-as-a-data-scientist-in-2018-20e7e3ee4ab3
8. Videos of one of my favourite Youtuber: Joma(a DS/ SDE with an amazing experience in big names):
    1). 5 tips for landing a Data Science job: https://www.youtube.com/watch?v=MfP-P8EHGBo
    2). 3 types of interview questions: https://www.youtube.com/watch?v=4Z6lxfglvUU  
9. Linkedin community: Randy Lao, Kyle McKiou...

-------------------------------------------------------------------------------------------------------------
我就不设置隐藏积分权限了,毕竟是回报社会贴。小伙伴们求顶贴+大米哈~



补充内容 (2019-1-7 11:22):
补充一个metrics部分的资源,AARRR: https://medium.com/@ms.mbalke/aa ... e-ship-e91d4082994b

补充内容 (2019-1-11 01:27):. check 1point3acres for more.
加粗不知道为什么失效了,好多人来问。最终去了Zynga.

补充内容 (2019-1-11 06:26):
勘误:product sense -->相关资料准备 --> 4)
我是用的不是 Collection of Data Science Takehome Challenges, 而是他们家整个package里的一个40 PRODUCT ON-SITE QUESTIONS的书。这本书是我觉得很有用的资源。

附件1.zip

1.64 MB, 阅读权限: 1, 下载次数: 333, 下载积分: 大米 -1 升

评分

参与人数 202大米 +809 收起 理由
Husky_wang + 3 给你点个赞!
魔路 + 20 给你点个赞!
西风之歌 + 3 给你点个赞!
bridget6918 + 1 赞一个
coldplay + 3 很有用的信息!
majiliang5555 + 3 收益匪浅,感谢博主让我更加明确以后选ds的.
zjpjhf + 3 谢谢分享
HHHHarold + 3 给你点个赞!
AERO2017 + 3 谢谢分享!
Kaku + 3 给你点个赞!
zhoudy1111 + 3 给你点个赞!
想买一个大house + 3 很有用的信息!
superbmiracle + 3 很有用的信息!
LGlayama + 3 给你点个赞!
yottafear + 3 很有用的信息!

查看全部评分


上一篇:非死不可 DS电面面经 顺便发ds take home challenge求大米
下一篇:DS跳槽准备+打卡

本帖被以下淘专辑推荐:

我的人缘0
xiongshou 发表于 3 天前 | 显示全部楼层
本楼: 【顶】   100% (2)
 
 
0% (0)   【踩】
全局: 顶  100% (3)
 
 
0% (0)  踩
楼主这样努力,善于总结并愿意分享的人,成功找到满意的工作是必然~ 谢谢楼主
回复

使用道具 举报

我的人缘14
Warald 发表于 2019-1-8 03:13:16 | 显示全部楼层
本楼: 【顶】   100% (1)
 
 
0% (0)   【踩】
全局: 顶  95% (3933)
 
 
4% (166)  踩
20180612034604983.jpg
本文被选为01/07/2019全站置顶文章之一。
作者获得大米奖励。谢谢你的分享
回复

使用道具 举报

我的人缘0
lisha0803 发表于 2019-1-8 00:55:37 | 显示全部楼层
本楼: 【顶】   100% (1)
 
 
0% (0)   【踩】
全局: 顶  100% (3)
 
 
0% (0)  踩
谢谢楼主分享,非常全面的总结!
不过请问“也有签了offer之后就没再follow up、自己放掉的机会”是怎么回事。。。
回复

使用道具 举报

我的人缘0
璨瑾瑜 发表于 2019-1-7 10:25:33 | 显示全部楼层
本楼: 【顶】   0% (0)
 
 
0% (0)   【踩】
全局: 顶  100% (5)
 
 
0% (0)  踩
感谢楼主!有空打球啊!
回复

使用道具 举报

我的人缘0
wangzijian 发表于 2019-1-7 10:34:44 | 显示全部楼层
本楼: 【顶】   0% (0)
 
 
0% (0)   【踩】
全局: 顶  0% (0)
 
 
0% (0)  踩
感谢楼主!楼主威武!舔屏ing!
回复

使用道具 举报

我的人缘0
 楼主| leiduan 发表于 2019-1-7 10:49:21 来自一亩三分地官方APP | 显示全部楼层
本楼: 【顶】   0% (0)
 
 
0% (0)   【踩】
全局: 顶  100% (219)
 
 
0% (0)  踩
璨瑾瑜 发表于 2019/01/07 10:25:33
感谢楼主!有空打球啊!

来SF!打起打起!
回复

使用道具 举报

我的人缘0
 楼主| leiduan 发表于 2019-1-7 10:50:11 来自一亩三分地官方APP | 显示全部楼层
本楼: 【顶】   0% (0)
 
 
0% (0)   【踩】
全局: 顶  100% (219)
 
 
0% (0)  踩
wangzijian 发表于 2019/01/07 10:34:44
感谢楼主!楼主威武!舔屏ing!

兄弟不闹:P
回复

使用道具 举报

我的人缘0
l4yao 发表于 2019-1-7 12:19:48 | 显示全部楼层
本楼: 【顶】   0% (0)
 
 
0% (0)   【踩】
全局: 顶  100% (1)
 
 
0% (0)  踩
太赞了!希望更多的人看见!

With React+D3v4 you'll learn the basics of building fast data visualization components in about an hour.


回复

使用道具 举报

我的人缘0
huixingzhijia 发表于 2019-1-7 12:47:30 | 显示全部楼层
本楼: 【顶】   0% (0)
 
 
0% (0)   【踩】
全局: 顶  100% (4)
 
 
0% (0)  踩
谢谢楼主分享
回复

使用道具 举报

我的人缘0
vacous 发表于 2019-1-7 14:37:21 | 显示全部楼层
本楼: 【顶】   0% (0)
 
 
0% (0)   【踩】
全局: 顶  100% (29)
 
 
0% (0)  踩
总结的真好 感谢楼主
看到这一条泪目了: 5. .......还要有一颗足够坚强的内心...要非常坚强才可以
回复

使用道具 举报

我的人缘0
fordreameng 发表于 2019-1-7 16:45:33 | 显示全部楼层
本楼: 【顶】   0% (0)
 
 
0% (0)   【踩】
全局: 顶  100% (2)
 
 
0% (0)  踩
谢谢楼主分享~
回复

使用道具 举报

游客
请先登录

本版积分规则

提醒:发帖可以选择内容隐藏,部分板块支持匿名发帖。请认真读完以下全部说明:

■隐藏内容方法 - 不要多加空格: [hide=200]你想要隐藏的内容比如面经[/hide]
■意思是:用户积分低于200则看不到被隐藏的内容
■可以自行设置积分值,不建议太高(200以上太多人看不到),也不建议太低(那就没必要隐藏了)
■建议只隐藏关键内容,比如具体的面试题目、涉及隐私的信息,大部分内容没必要隐藏。
■微信/QQ/电子邮件等,为防止将来被骚扰甚至人肉,以论坛私信方式发给对方最安全。
■匿名发帖的板块和方法:http://www.1point3acres.com/bbs/thread-405991-1-1.html

手机版|小黑屋|一亩三分地留学网

GMT+8, 2019-1-19 10:28

Powered by Discuz! X3

© 2001-2013 Comsenz Inc. Design By HUXTeam

快速回复 返回顶部 返回列表